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Lecture 3

More on Maxwell
Wave Equations
Boundary Conditions
Poynting Vector
Transmission Line
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Maxwell’s equations in differential form
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Electromagnetic waves in lossless media - Maxwell’s equations

SI Units
• J Amp/ metre2

• D Coulomb/metre2

• H Amps/metre
• B Tesla

Weber/metre2

Volt-Second/metre2

• E Volt/metre
• ε Farad/metre
• µ Henry/metre
• σ Siemen/metre
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Constitutive relations
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Wave equations in free space
• In free space

– σ=0 ⇒J=0
– Hence:

dt
BE ∂

−=×∇

dtdt
DDJH ∂

=
∂

+=×∇

2

2

t

tt

ttt

o

o

o

∂
∂

−=×∇×∇









∂
∂

∂
∂

−=

×∇
∂
∂

−=×∇
∂
∂

−=
∂
∂

×−∇=×∇×∇

EE

D

HBBE

εµ

µ

µ
– Taking curl of both sides of latter equation:



5

Advanced Photon Source

RF and Microwave Physics         Fall 2002     ANL

Wave equations in free space cont.

• It has been shown (last week) that for any vector A

where                         is the Laplacian operator
Thus:
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• There are no free charges in free space so ∇.E=ρ=0 
and we get

A three dimensional wave equation
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• Both E and H obey second order partial differential wave 
equations:
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Wave equations in free space cont.
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• What does this mean 
– dimensional analysis ?

– µοε has units of velocity-2

– Why is this a wave with velocity 1/ √µοε ?
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• Consider a uniform plane wave, propagating in the z
direction. E is independent of x and y

Uniform plane waves - transverse relation of E and H
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In a source free region, ∇.D=ρ =0 (Gauss’ law) :

E is independent of x and y, so

• So for a plane wave, E has no component in the direction of 
propagation. Similarly for H.

• Plane waves have only transverse E and H components.
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Orthogonal relationship between E and H:
• For a plane z-directed wave there are no variations along x and y:
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• Spatial rate of change of H is proportionate to the temporal rate of change of 
the orthogonal component of E & v.v. at the same point in space



9

Advanced Photon Source

RF and Microwave Physics         Fall 2002     ANL

t
E

z
H

t
E

z
H

yx

xy

∂

∂
=

∂
∂

∂
∂

=
∂

∂
−

ε

ε( )

( )vtzfvE
t

E

vtzfEE

o
y

oy

−′−=
∂

∂
⇒

−=

εε

t
H

z
E

t
H

z
E

y
o

x

x
o

y

∂

∂
=

∂
∂

∂
∂

=
∂

∂

µ

µ

x
o

y EH
µ
ε

=

• Similarly

( ) ( )

y
o

x

y

oox

EH

vE

vtzfvEconstzvtzfvEH

µ
ε

ε

εε

−=

−=

−−=+−′−=⇒ ∫ d

z
H x

∂
∂

=

Orthogonal and phase relationship between E and H:

• H and E are in phase and orthogonal

• Consider a linearly polarised wave that has a 
transverse component in (say) the y direction only:
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• The ratio of the magnetic to electric fields strengths is:

which has units of impedance
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• and the impedance of free space is:
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Orientation of E and H
• For any medium the intrinsic impedance is denoted by η

and taking the scalar product

so E and H are mutually orthogonal
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• Taking the cross product of E and H we get the direction 
of wave propagation 
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A ‘horizontally’ polarised wave
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• Sinusoidal variation of E and H
• E and H in phase and orthogonal
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A block of space containing an EM plane wave
• Every point in 3D space is characterised by

– Ex, Ey, Ez
– Which determine

• Hx, Hy, Hz
• and vice versa

– 3 degrees of freedom
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• Energy stored in the EM field in the thin box is:
Power flow of EM radiation
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• Power transmitted through the box is dU/dt=dU/(dx/c)....
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• This is the instantaneous power flow
– Half is contained in the electric component 
– Half is contained in the magnetic component

• E varies sinusoidal, so the average value of S is obtained 
as:
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• S is the Poynting vector and indicates the direction and magnitude of 
power flow in the EM field.
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Example problem
• The door of a microwave oven is left open

– estimate the peak E and H strengths in the aperture of the door. 
– Which plane contains both E and H vectors ?
– What parameters and 

equations are required?

22
2

W/mHES η
η

==

• Power-750 W
• Area of aperture - 0.3 x 0.2 m
• impedance of free space - 377 Ω
• Poynting vector:
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Solution
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Constitutive relations
• permittivity of free space ε0=8.85 x 10-12 F/m
• permeability of free space µo=4πx10-7 H/m
• Normally εr (dielectric constant) and µr 

– vary with material
– are frequency dependant

• For non-magnetic materials µr ~1 and for Fe is ~200,000
• εr is normally a few ~2.25 for glass at optical frequencies

– are normally simple scalars (i.e. for isotropic materials) so 
that D and E are parallel and B and H are parallel

• For ferroelectrics and ferromagnetics εr and µr depend on the 
relative orientation of the material and the applied field:
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Constitutive relations cont...
• What is the relationship between ε and refractive index for non 

magnetic materials ?
– v=c/n is the speed of light in a material of refractive index n

– For glass and many plastics at optical frequencies
• n~1.5
• εr~2.25

• Impedance is lower within a dielectric

What happens at the boundary between materials of different 
n,µr,εr ?

r
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Why are boundary conditions important ?
• When a free-space electromagnetic wave is incident 

upon a medium secondary waves are
– transmitted wave
– reflected wave

• The transmitted wave is due to the E and H fields at 
the boundary as seen from the incident side

• The reflected wave is due to the E and H fields at the 
boundary as seen from the transmitted side

• To calculate the transmitted and reflected fields we 
need to know the fields at the boundary
– These are determined by the boundary conditions
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Boundary Conditions cont.

• At a boundary between two media, µr,εrσ are different on either 
side. 

• An abrupt change in these values changes the characteristic 
impedance experienced by propagating waves

• Discontinuities results in partial reflection and transmission of 
EM waves

• The characteristics of the reflected and transmitted waves can be 
determined from a solution of Maxwells equations along the 
boundary

µ2,ε2,σ2

µ1,ε1,σ1
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Boundary conditions
• The tangential component of E is continuous 

at a surface of discontinuity
– E1t,= E2t

• Except for a perfect conductor, the 
tangential component of H is continuous at a 
surface of discontinuity
– H1t,= H2t

E1t, H1t

µ2,ε2,σ2

µ1,ε1,σ1

E2t, H2t

µ2,ε2,σ2

µ1,ε1,σ1D1n, B1n

D2n, B2n

• The normal component of D is continuous at 
the surface of a discontinuity if there is no 
surface charge density. If there is surface 
charge density D is discontinuous by an 
amount equal to the surface charge density.

– D1n,= D2n+ρs
• The normal component of B is continuous at 

the surface of discontinuity

– B1n,= B2n
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• The integral form of Gauss’ law for electrostatics is:

Proof of boundary conditions - Dn

∫∫∫∫∫ =
V

dVρAD d.

applied to the box gives
yxyxDyxD snn ∆∆=Ψ+∆∆−∆∆ ρedge21

0,0dAs edge →Ψ→z hence

snn DD ρ=− 21
The change in the normal component of D at a 
boundary is equal to the surface charge density

y∆

µ2,ε2,σ2

µ1,ε1,σ1

1nD

2nD

z∆

x∆
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• For an insulator with no static electric charge ρs=0
snn DD ρ=− 21

Proof of boundary conditions - Dn cont.

21 nn DD =

• For a conductor all charge flows to the surface and for an 
infinite, plane surface is uniformly distributed with area 
charge density ρs

In a good conductor, σ is large, D=εE≈0 hence if 
medium 2 is a good conductor

snD ρ=1
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Proof of boundary conditions - Bn
• Proof follows same argument as for Dn on page 47,
• The integral form of Gauss’ law for magnetostatics is

– there are no isolated magnetic poles

0d. =∫∫ AB

21

edge21 0

nn

nn

BB

yxByxB

=⇒

=Ψ+∆∆−∆∆

The normal component of B at a boundary is 
always continuous at a boundary
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Conditions at a perfect conductor
• In a perfect conductor σ is infinite
• Practical conductors (copper, aluminium silver) have 

very large σ and field solutions assuming infinite σ can 
be accurate enough for many applications
– Finite values of conductivity are important in calculating 

Ohmic loss

• For a conducting medium
– J=σE

• infinite σ⇒ infinite J
• More practically, σ is very large, E is very small (≈0) and J is finite
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• It will be shown that at high frequencies J is confined to a surface 
layer with a depth known as the skin depth

• With increasing frequency and conductivity the skin depth, δx
becomes thinner

Lower frequencies, 
smaller σ

Higher frequencies, 
larger σ

δx
δx

Current sheet

• It becomes more appropriate to consider the current density in 
terms of current per unit with:

0
A/mlim

→
=

x
x s

δ
δ JJ

Conditions at a perfect conductor
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• Ampere’s law:
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Conditions at a perfect conductor cont.
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• From Maxwell’s equations:
– If in a conductor E=0 then dE/dT=0
– Since

Conditions at a perfect conductor cont.

dt
HE ∂

−=×∇ µ

szx JH =1

Hx2=0 (it has no time-varying component and also 
cannot be established from zero)

The current per unit width, Js, along the surface of a 
perfect conductor is equal to the magnetic field just 
outside the surface:

• H and J and the surface normal, n, are mutually 
perpendicular: HnJ ×=s
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Summary of Boundary conditions
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Reflection and refraction of plane waves

• At a discontinuity the change in µ, ε and σ results 
in partial reflection and transmission of a wave

• For example, consider normal incidence:
( )ztj

ieE βω −=waveIncident
( )ztj

reE βω +=waveReflected

• Where Er is a complex number determined by the 
boundary conditions
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Reflection at a perfect conductor

• Tangential E is continuous across the 
boundary 

• For a perfect conductor E just inside the 
surface is zero
– E just outside the conductor must be zero

ri

ri

EE
EE

−=⇒
=+ 0

• Amplitude of reflected wave is equal to 
amplitude of incident wave, but reversed in 
phase
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Standing waves
• Resultant wave at a distance -z from the interface is 

the sum of the incident and reflected waves
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Standing waves cont...

• Incident and reflected wave combine to produce 
a standing wave whose amplitude varies as a 
function (sin βz) of displacement from the 
interface

• Maximum amplitude is twice that of incident 
fields

( ) tzEtzE iT ωβ sinsin2, =



35

Advanced Photon Source

RF and Microwave Physics         Fall 2002     ANL

Reflection from a perfect conductor



36

Advanced Photon Source

RF and Microwave Physics         Fall 2002     ANL

Reflection from a perfect conductor

• Direction of propagation is given by E×H
If the incident wave is polarised along the y axis:
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EE
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+=
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That is, a z-directed wave.

xiyiz HEaHΕ −=×For the reflected wave                                and yiyr EE a−=
So                                   and the magnetic field is 
reflected without change in phase

ixixr HHH =−= a
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• Given that

Reflection from a perfect conductor
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As for Ei, Hi is real (they are in phase), therefore

( ) ( ){ } tzHtjtzHtzH iiT ωβωωβ coscos2sincoscos2Re, =+=
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• Resultant magnetic field strength also has a standing-wave 
distribution

• In contrast to E, H has a maximum at the surface and zeros 
at (2n+1)λ/4 from the surface:

( ) tzHtzH iT ωβ coscos2, =

Reflection from a perfect conductor

free space silver

resultant wave

z = 0

z [m]

E [V/m]

free space silver

resultant wave

z = 0

z [m]

H [A/m]
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Reflection from a perfect conductor

• ET and HT are π/2 out of phase(                                      )
• No net power flow as expected

– power flow in +z direction is equal to power flow in - z
direction

( ) tzHtzH iT ωβ coscos2, =

( ) tzEtzE iT ωβ sinsin2, =

( )2/cossin πωω −= tt
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Reflection by a perfect dielectric
• Reflection by a perfect dielectric (J=σE=0)

– no loss
• Wave is incident normally

– E and H parallel to surface
• There are incident, reflected (in medium 1)and 

transmitted waves (in medium 2):



41

Advanced Photon Source

RF and Microwave Physics         Fall 2002     ANL

Reflection from a lossless dielectric
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Reflection by a lossless dielectric

• Continuity of E and H at boundary requires:
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tt

rr

ii

HE
HE

HE

2

1

1

η
η

η

=
−=

=

Which can be combined to give
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• Similarly

Reflection by a lossless dielectric

tri
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The transmission coefficient
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• Furthermore:
Reflection by a lossless dielectric

H
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And because µ=µo for all low-loss dielectrics
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Energy Transport - Poynting Vector

Electric and Magnetic Energy Density:

For an electromagnetic plane wave

( ) ( )
( ) ( )

cEB

tkxBtxB

tkxEtxE

z

y

00

0

0

=
ω−=

ω−=

where 
sin,

sin,

The electric energy density is given by

( )

EB

E

uE
c

Bu

tkxEEu

=
µ

=
µ

=

ω−ε=ε=

2

0

2

0

22
00

2
0

2
1

2
1

2
1

2
1 is energy magnetic the and sin

Note: I used BcE =

y

z

E

B
x
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Energy Transport - Poynting Vector cont. 
Thus, for light the electric and the magnetic field energy densities are 
equal and the total energy density is 

( )tkxEBEuuu BEtotal ω−ε=
µ

=ε=+= 22
00

2

0

2
0

1 sin

Poynting Vector                             :








×

µ
= BES

rrr

0

1

The direction of the Poynting Vector is the
direction of energy flow and the magnitude 











=

µ
=

µ
=

dt
dU

Ac
E

EBS
11

0

2

0

Is the energy per unit time per unit area 
(units of Watts/m2).

z

y

x
B

E
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Energy Transport - Poynting Vector cont. 

Proof:

( )tkx
c

E
c

E
cE

dt
dU

A
S

AcdtEVudU totaltotal

ω−
µ

=
µ

=ε==

ε==

2

0

2
0

0

2
2

0

2
0

1 sin

so 

Intensity of the Radiation (Watts/m2):

The intensity, I, is the average of S as follows:

( ) .sin
c

E
tkx

c
E

dt
Ud
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2
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2
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2
1

µ
=ω−
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Ohm’s law

EJ σ=

Skin depth

Current density decays 
exponentially from the 
surface into the interior of 
the conductor
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Phasors

Fictitious way of dealing with AC circuits

R=6 Ω

L=0.2 mH
+

-
νs(t)

( ) { }tjIeti ω= Re
LjR

V
I s

ω+
=

Measurable 
quantity Phasor (not real)
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Phasors cont.

Phasors in lumped circuit analysis have no space  
components

Phasors in distributed  circuit analysis (RF) have a space 
component because they act as waves  

( ) { }==ν β±         xjeVtx 0Re, tje ω ( )xtV β±ωcos0
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Generic Transmission Line

+

-
νg(t)

A

A’

B

B’

VAA’ VBB’

R

C

i

l

Line
termination At line input side:

( )tVV AA ω=′ cos0

At line output side:













 −ω=′ c
tVV BB

lcos0

Is this a wave?

[ ]l  β−ω=⇒β=
ω

′ tVV
c BB cos0
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Basic Measurement procedure of a transmission line

Voltage is sampled at t = 0

( ) 00 0 VVV AA ==′ cos

For length of 10 cm, f =1KHz

00 8999012
V

c
kHz

VV BB ....cos =



 ××π

=′
l

For length of 10 cm, f =1KHz

00 5012
V

c
GHz

VV BB .cos −=



 ××π

=′
l
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What if low frequency, but long wire?

Frequency f = 1kHz, but length = 20 km (phone line)

00 9102012
V

c
kmkHz

VV BB .cos =



 ××π

=′

Key point: trade-off space/ frequency

( ) !.cos. 10102010

22

≈×⇒→
λ

λ
=

λ
π

=
ω

π

π
c
l

l  ll

010

010

.

.

≤
λ

≥
λ
l

l
Included

Excluded

Trans. 
Effects
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Types of Transmission Lines

TEM Transmission Lines

Higher Order Transmission Lines

RF

mw
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A few Transmission Line Systems

Twin-wire pair

Coaxial cable 

(self shielding)
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A few Transmission Line Systems (cont.)
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Common Feature of Different Transmission Lines
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Traveling Voltage and Current Waves

Characteristic line impedance

( ) ( )

( ) ( )  
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2
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Significance of Characteristic Line Impedance

Independent of length

Incorporates specific 
line parameters  

(coax,micro-strip,parallel-plate,etc.)

Has absolutely nothing in 
common with the circuit element 
impedance
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Characteristic line impedance defines wave ratio

Lossless line impedance
50 ohms, RF circuits

75 ohms, antennae

−

−

+

+
−=

0

0

0

0

I

V

I

V

C
L

CjG
LjR

Z
′
′

 →
′ω+′
′ω+′

= lossless
0
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Lossless Transmission Line

Real characteristic line impedanceC
L

CjG
LjR

Z
′
′

≈
′ω+′
′ω+′

=0

Implies 

( )( ) CLjCjGLjRj ′′ω=′ω+′′ω+′=β+α=γ=α   in0

and

CL
u p ′′

=
β
ω

=
1

Phase velocity

CL ′′ω
π

=
β
π

=λ
22

Wave length
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Reflection Coefficient 

Any impedance mismatch
causes reflections

Is normally a complex quantity

Is directionally dependent  
(looking into the load or the source)

rjθ

L

L e
ZZ
ZZ

V

V
Γ=

+
−

==Γ
+

−

0
0

0

0
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Standing Wave along a transmission line

There are three special cases
of termination:

Matched line:

Short circuit:

Open circuit:

00 =Γ⇒= ZZL

10 −=Γ⇒=LZ

1=Γ⇒∞=LZ

rjθ

L

L e
ZZ
ZZ

V

V
Γ=

+
−

==Γ
+

−

0
0

0

0
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Voltage behavior for the three cases:
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How to quantify the amount of mismatch?

Arbitrary complex impedance

Voltage standing wave ratio

Γ−
Γ+

===
1
1

min

max~

~

V

V
SVSWR

VSWR = 1 (matched)

VSWR = ∞
(short/open)
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Input impedance of a terminated transmission line

( ) ( )
( )zI
zV

zZ in ~
~

=

Arbitrary location Z

Idea is to compute the input impedance 
of a loaded transmission line in terms of 
the total voltage and current waves.
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Voltage and current expressions

Zin

Transmission line

ZLZ0

+

-

+

-

z = -l z = 0
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LV~

LI~

( ) ( )zjzj eeVzV ββ−+ Γ+= 0
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== 2

2
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1
1

~
~

( ) ( )
( )l

l
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=
tan
tan

L

L
in jZZ

jZZ
ZzZ

0
0

0
Important T.L. equation
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Including the generator into the T.L. 

ZLZ0

+

-

+

-

z = -l z = 0
load

LV~

LI~

+

-
νg(t)

Zg
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Zg

Zin

+

-

iV~

   zj
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ing
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~
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Special cases of lossless line

Zin

Transmission line

ZLZ0

+

-

+

-

z = -l z = 0
load

LV~

LI~

( )
( ) inin

L

L
in jXR

jZZ
jZZ

ZZ +=
β+
β+

=
l
l

tan
tan

0
0

0

Input impedance can be changed almost arbitrarily depending 
on line length,frequency, and termination conditions.
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Short circuit T.L. ( ) ( ) in
sc
in ll jXjZZ =β=− tan0

For a given inductance ( Leq)








 ω

β
= −

0
11

Z

Leqtanl

For a given capacitance ( Ceq)
























ω
−π

β
= −

eqCZ 0
1 11 tanl
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Open circuit T.L.

( ) ( ) in
os
in ll jXjZZ =β−=− cot0

A similar procedure applies. However , 
an open circuit condition is difficult to 
enforce for high frequency opreation 
frequencies.
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How to measure Characteristic line impedance and propagation 
constant?

( ) ( )llsc
in β=− tan0jZZ

( ) ( )llos
in β−=− cot0jZZ

Conducting an open/short circuit measurement test with a 
NWA or VVM yields the characteristic line impedance.

( )
os
in

sc
in

os
in

sc
in

l
Z

Z

ZZZ

−
=β

=

tan

0
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Lambda-half line ( )2λ= nl

( )
( )l

l
β+
β+

=
tan
tan

00
0

0 jZZ
jZZ

ZZ L
in LZ

( ) 0=πntan

If the line length is multiples of            , it is as if the T.L. is not present!2λ
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Lambda-quarter transformer

( )
( )l

l
β+
β+

=
tan
tan

00
0

0 jZZ
jZZ

ZZ L
in

LZ

Z 2
0

( ) ∞→π 2ntan

This transformation is of significant practical interest, since it allows us 
to match a given load impedance to a particular line impedance.

LZZZ 0102 =

Required impedance 
for matching element

A

A’

Feedline

Ω= 5001Z Ω= 100LZ

4λ

02ZinZ
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Power flow consideration along a lossless line

Generic average power definition

{ }*~~Re IVPav ⋅=
2
1

Basic power definition applies to total voltage and current 
expressions. For transmission lines, this means:

ri VVV ~~~ += and ri III ~~~ += 

Voltage/current must be split into forward and backward 
traveling wave components
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For a transmission line we need to modify our general
power expression
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Electrical properties of Materials

Classification of materials can be done by their conductivity.

Conductors Semi-conductors Insulators

1710 −⋅≈ mS 1310 −− ⋅≈ mS 11510 −− ⋅≈ mS

( )11 11 −− ⋅=⋅ mmhomS

( ) EEuuJJJ hVeVhVeVhe hehe
σ=µρ+µρ=ρ+ρ=+=

Current is composed of two charged carriers
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Resistance
Voltage drop

ll xEdEV =⋅−= ∫
1

2

Current

∫ σ=⋅−=
1

2
AEdSJI x

∫∫
∫

∫∫
∫

⋅σ

⋅−
=

⋅

⋅−
=

dSE

dE

dSJ

dE
R

ll
In general
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Conductance of a coax-cable
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